-
轴承加热器/感应加热器
- YZRA系列轴承加热器
- Hai系列台式轴承加热器
- NIEDOX-H轴承加热...
- NIEDOX-HE轴承加...
- 利德平板加热器
- 利德塔式轴承加热器/塔式...
- 利德LD系列轴承加热器
- ZMH系列轴承加热器
- LD35系列智能轴承加热...
- HLD新款轴承加热器(铜...
- AUELY系列轴承加热器
- 瑞士森马轴承加热器
- 荷兰BEGA轴承加热器
- 瑞典SKF轴承加热器
- 德国FAG轴承加热器
- 法国TFT系列轴承感应加...
- 美国TIMKEN(铁姆肯...
- 韩国YOOJIN轴承加热...
- 荷兰TM轴承加热器
- GJW系列轴承加热器
- SPH系列轴承加热器
- Auely轴承加热器(老...
- SM20K系列轴承加热器
- SM30K系列自控轴承加...
- YN系列感应加热器
- ZJY系列轴承加热器
- GJT30HW轴承加热器
- HA系列轴承加热器
- ZJ20X系列轴承加热器
- BGJ系列轴承加热器
- SM38系列智能轴承加热...
- ELD系列轴承加热器
- FY轴承加热器
- SMBG轴承漩涡加热器
- FY-RMD轴承加热器
- YJ30H轴承加热器
- STDC轴承感应加热器
- KLW系列轴承加热器
- DC系列自控轴承加热器(...
- STDC微电脑轴承加热器
- DKQ系列数控轴承加热器
- ST系列移动式轴承加热器
- SMDC系列轴承加热器
- DM系列感应加热器
- YZDC系列轴承加热器
- YZHA/YZTH/YZ...
- YG51-BGJ系列感应...
- LD30H系列轴承感应加...
- LD38系列全自动轴承加...
- 齿轮加热器/联轴器加热器
- 电机铝壳加热器/机壳加热...
-
FAG轴承加热器德国新款
- 轴承感应拆卸器
-
变频感应加热器/拽引轮加...
-
法兰测平仪/激光测平仪/...
-
相关仪/英国豪迈HWM相...
- 利德超声波探伤仪/超声波...
- 油质检测仪/便携式油质分...
- 冷态轴承安装工具
- 液压拉马(拔轮器)LA2...
- 轴承起拔器(分离式拉拔器...
-
宁波温度计/利德SW-2...
- 瑞典SKF产品库存销售
-
耦合器拉马/耦合器拆卸工...
- 管道漏水检测仪/测漏仪/...
- 地下管线探测仪/管线仪
-
管道防腐层检测仪
- 现场动平衡仪/动平衡测量...
-
振动分析仪/频谱分析仪
- 查线器-金属探测器
- 激光对中仪/轴对中仪
- 皮带轮对心仪
- 皮带张力计
-
数字钢轨探伤仪
-
振动故障检测仪/多功能振...
- 测振仪/手持式测振仪
- 轴承故障诊断仪/轴承检测...
- 电机故障检测仪/电机诊断...
-
电火花检测仪
- 万用表/数字万用表
- 合拢器/螺旋式合拢器
- 液压扳手/特种扳手
- 钳型表/数字钳型表
-
轴承故障检测仪
- 相位转换-插孔极性测试器
- 绝缘表-地阻表-LOOP...
- 红外线测温仪
- 接触式温度表/汽车表
- 压力计/数据记录器/环境...
- 风速计/噪音计/照度计
-
超声波探伤仪
-
红外热成像仪
- 涂层测厚仪/超声波测厚仪
-
液压拉马工具/车载电动液...
- 温湿度计/木材湿度计
- 激光测距仪/窥镜视屏仪
-
气体检测仪
- 转速表/硬度计
- 频闪仪/频闪观测仪
-
ELD系列轴承加热器
-
自动注油器
- 电缆故障定位仪/电缆故障...
-
超声波流量计
-
轴承安装工具
新闻详情
漏水检测中的强度(振动大小、声音大小)分析和频率分析
日期:2025-05-06 13:50
浏览次数:6501
摘要:
漏水检测中的强度(振动大小、声音大小)分析和频率分析
虽不能说有这三种特性的振动就是漏水声,但可以说没有这三种特性的振动决不是漏水声,也就是说:这就排除了如下许多干扰性的杂散噪声:
可听到间断的振动——非漏;
一直稳定而无起伏的平滑的——非漏;
只有某种特定频率的——非漏。
所以可以从信号特征上看出,所测信号可能性大,但不是漏水。
1漏水检测仪强度分析(LD-2000漏水检测仪,LD-3000数字漏水检测仪,LD-5000智能漏水检测仪)
基本出发点:
(1)由漏水引起的振动强度,的大小,是由漏口处水流冲击的能量决定的。
能量的大小由水压高低——高← →大,底← →小。
流量大小,大→大,小→小。
冲击过程中的耗失,耗失大← →振动能量就减少得多。
高水压,主管道(大流量)的喷射对应大能量振动状态。
小支管(小流量)小喷孔
对应小能量振动状态
失压水流
大能量振动对应地面振动范围较宽广。
小能量振动对应地面振动范围较窄小。
冲击方向也有较明显的作用,正向上,侧向向下,冲击振动范围不同。
由同一状态下,传感器感受的范围为基本特点。
(2)相对的大小:指在感受范围内,中心在何处,中心往往对应喷射冲击点,有时就简认为是漏点。
基本出发点:
(1)由漏水引起的振动强度,的大小,是由漏口处水流冲击的能量决定的。
能量的大小由水压高低——高← →大,底← →小。
流量大小,大→大,小→小。
冲击过程中的耗失,耗失大← →振动能量就减少得多。
高水压,主管道(大流量)的喷射对应大能量振动状态。
小支管(小流量)小喷孔
对应小能量振动状态
失压水流
大能量振动对应地面振动范围较宽广。
小能量振动对应地面振动范围较窄小。
冲击方向也有较明显的作用,正向上,侧向向下,冲击振动范围不同。
由同一状态下,传感器感受的范围为基本特点。
(2)相对的大小:指在感受范围内,中心在何处,中心往往对应喷射冲击点,有时就简认为是漏点。
对应不同深度——
管线振动附加。(沿管线有时在浅埋情况传得很远)
不同管线材质——刚(硬弹性好的)广,塑管,水泥管范围相对较小。不同喷射口形状和方向(洞,集中,条口——长)。不同土层埋层传播,吸收的本领也影响振动范围。
过硬实
柔软性不易传播振动。
草地
空壳、弹性、硬实(易传播振动)。
(3)漏水检测仪检测难点:应分析,针对性排除
传感器难以感受振动的情况:难以寻找疑点。
一般有:(A)失压水,仅流不冲。
(B)过饱和水淹没——长时浸泡,使管周围全为水淹没,无冲击水。
(C)过深,埋层状态多层次,软硬复杂。
(D)漏点上有杂乱堆积物。
传感器有感受而过分杂乱的情况:
1.管线分布不清,转弯,接头,三通等过于集中,分布不清。
2.埋管浅,沿管线均有相当强的振动。
3.路表状况复杂,空洞,薄壳,块状物,杂乱分布。
不同管线材质——刚(硬弹性好的)广,塑管,水泥管范围相对较小。不同喷射口形状和方向(洞,集中,条口——长)。不同土层埋层传播,吸收的本领也影响振动范围。
过硬实
柔软性不易传播振动。
草地
空壳、弹性、硬实(易传播振动)。
(3)漏水检测仪检测难点:应分析,针对性排除
传感器难以感受振动的情况:难以寻找疑点。
一般有:(A)失压水,仅流不冲。
(B)过饱和水淹没——长时浸泡,使管周围全为水淹没,无冲击水。
(C)过深,埋层状态多层次,软硬复杂。
(D)漏点上有杂乱堆积物。
传感器有感受而过分杂乱的情况:
1.管线分布不清,转弯,接头,三通等过于集中,分布不清。
2.埋管浅,沿管线均有相当强的振动。
3.路表状况复杂,空洞,薄壳,块状物,杂乱分布。
Ⅱ(漏水检测仪频率分析)
一、在管道上测听振动声时的频率分析。
二、有了漏水疑点,在分析定点时对振动范围的声振情况进行频率分析。
管道上测听振动声的频率分析。首先了解漏水声振动是——较宽频带的有非平稳起伏特性。
出发点:
A、管道传声比土层传声远,传感器直接接触管线可直接了解管线在几十米甚至上百米的振动情况。
当然不同型材质对传声能力也不同,钢质,镀锌管类小口径管道传声更远,塑料和水泥管较近。
B、不同频率,在同型管材中有不同衰减系数,一般低频传得远,高频传得近(耗损快)
C、管道接头等对传声有隔离衰减小,柔性衰减大,低频衰减小,高频衰减大。
D、管中的水也是传声良导体。
一、在管道上测听振动声时的频率分析。
二、有了漏水疑点,在分析定点时对振动范围的声振情况进行频率分析。
管道上测听振动声的频率分析。首先了解漏水声振动是——较宽频带的有非平稳起伏特性。
出发点:
A、管道传声比土层传声远,传感器直接接触管线可直接了解管线在几十米甚至上百米的振动情况。
当然不同型材质对传声能力也不同,钢质,镀锌管类小口径管道传声更远,塑料和水泥管较近。
B、不同频率,在同型管材中有不同衰减系数,一般低频传得远,高频传得近(耗损快)
C、管道接头等对传声有隔离衰减小,柔性衰减大,低频衰减小,高频衰减大。
D、管中的水也是传声良导体。
依上述,形成许多可应用的机会:
1)利用管线传声良好的特点
在管线上分布;较多传感器,可搜集管网各处传来的振动声,这是当前国外许多监测系统的基础,也是相关仪用两只传感器放在管线两点测振动相关性的基础。
同时我们也看出,基于这个基础的仪器要求的条件和局限性。
2)利用管线一般是“高频易衰低频远”的特点
直接在管线上听声音,大致判断附近管道有无漏水(连续的、有某种特点的起伏性振动)以及大致的远近。
3)利用管道接口上的附属物
如在闸门,水表,两侧直接听音。漏点在偏强,偏高频的一侧。
4)以水作传声介质时可用水听器作为相关的传感器,一般有更好的效果,但放入管道中这一环的有不少麻烦。
在使用例如LD-3000型漏水检漏仪中,6条光柱(不同频率)同时显示信号情况时,主要了解,什么是“连续性”、“非稳定性”或“有起伏性”、“较宽频带”的含义。1)利用管线传声良好的特点
在管线上分布;较多传感器,可搜集管网各处传来的振动声,这是当前国外许多监测系统的基础,也是相关仪用两只传感器放在管线两点测振动相关性的基础。
同时我们也看出,基于这个基础的仪器要求的条件和局限性。
2)利用管线一般是“高频易衰低频远”的特点
直接在管线上听声音,大致判断附近管道有无漏水(连续的、有某种特点的起伏性振动)以及大致的远近。
3)利用管道接口上的附属物
如在闸门,水表,两侧直接听音。漏点在偏强,偏高频的一侧。
4)以水作传声介质时可用水听器作为相关的传感器,一般有更好的效果,但放入管道中这一环的有不少麻烦。
虽不能说有这三种特性的振动就是漏水声,但可以说没有这三种特性的振动决不是漏水声,也就是说:这就排除了如下许多干扰性的杂散噪声:
可听到间断的振动——非漏;
一直稳定而无起伏的平滑的——非漏;
只有某种特定频率的——非漏。
所以可以从信号特征上看出,所测信号可能性大,但不是漏水。
销售服务网络:
华北地区
河北: 石家庄 唐山 秦皇岛 邯郸 邢台 保定 张家口 承德 沧州 廊坊 衡水
山西: 太原 大同 阳泉 长治 晋城 朔州 晋中 运城 忻州 临汾 吕梁
内蒙古: 呼和浩特 包头 乌海 赤峰 通辽 鄂尔多斯 呼伦贝尔 巴彦淖尔 乌兰察布 兴安 锡林郭勒 阿拉善
东北地区
辽宁: 沈阳 大连 鞍山 抚顺 本溪 丹东 锦州 营口 阜新 辽阳 盘锦 铁岭 朝阳 葫芦岛
吉林: 长春 吉林 四平 辽源 通化 白山 松原 白城 延边
黑龙江: 哈尔滨 齐齐哈尔 鸡西 鹤岗 双鸭山 大庆 伊春 佳木斯 七台河 牡丹江 黑河 绥化 大兴安岭
华东地区
江苏: 南京 无锡 徐州 常州 苏州 南通 连云港 淮安 盐城 扬州 镇江 泰州 宿迁
浙江: 杭州 宁波 温州 嘉兴 湖州 绍兴 金华 衢州 舟山 台州 丽水
安徽: 合肥 芜湖 蚌埠 淮南 马鞍山 淮北 铜陵 安庆 黄山 滁州 阜阳 宿州 巢湖 六安 亳州 池州 宣城
福建: 福州 厦门 莆田 三明 泉州 漳州 南平 龙岩 宁德
江西: 南昌 景德镇 萍乡 九江 新余 鹰潭 赣州 吉安 宜春 抚州 上饶
山东: 济南 青岛 淄博 枣庄 东营 烟台 潍坊 威海 济宁 泰安 日照 莱芜 临沂 德州 聊城 滨州 菏泽
中南地区
河南: 郑州 开封 洛阳 平顶山 焦作 鹤壁 新乡 安阳 濮阳 许昌 漯河 三门峡 南阳 商丘 信阳 周口 驻马店
湖北: 武汉 黄石 襄樊 十堰 荆州 宜昌 荆门 鄂州 孝感 黄冈 咸宁 随州 恩施
湖南: 长沙 株洲 湘潭 衡阳 邵阳 岳阳 常德 张家界 益阳 郴州 永州 怀化 娄底 湘西
广东: 广州 深圳 珠海 汕头 韶关 佛山 江门 湛江 茂名 肇庆 惠州 梅州 汕尾 河源 阳江 清远 东莞 中山 潮州 揭阳 云浮
广西: 南宁 柳州 桂林 梧州 北海 防城港 钦州 贵港 玉林 百色 贺州 河池 来宾 崇左
海南: 海口 三亚
西南地区
四川: 成都 自贡 攀枝花 泸州 德阳 绵阳 广元 遂宁 内江 乐山 南充 宜宾 广安 达州 眉山 雅安 巴中 资阳 阿坝 甘孜 凉山
贵州: 贵阳 六盘水 遵义 安顺 铜仁 毕节 黔西南 黔东南 黔南
云南: 昆明 曲靖 玉溪 保山 昭通 丽江 普洱 临沧 文山 红河 西双版纳 楚雄 大理 德宏 怒江 迪庆
西藏: 拉萨 昌都 山南 日喀则 那曲 阿里 林芝
西北地区
陕西: 西安 铜川 宝鸡 咸阳 渭南 延安 汉中 榆林 安康 商洛
甘肃: 兰州 嘉峪关 金昌 白银 天水 武威 张掖 平凉 酒泉 庆阳 定西 陇南 临夏 甘南
青海: 西宁 海东 海北 黄南 海南 果洛 玉树 海西
宁夏: 银川 石嘴山 吴忠 固原 中卫
新疆: 乌鲁木齐 克拉玛依 吐鲁番 哈密 和田 阿克苏 喀什 克孜勒苏柯尔克孜 巴音郭楞蒙古 昌吉 博尔塔拉蒙古 伊犁哈萨克 塔城 阿勒泰